

1. Calculate the limits of f at the boundaries of D.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^3}{x^2} = \lim_{x \to -\infty} x = -\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x = +\infty$$

$$\lim_{x \to 0^-} f(x) = \frac{1}{0^+} = +\infty$$

$$\lim_{x \to 0^+} f(x) = \frac{1}{0^+} = +\infty$$
So $x = 0$ is a vertical asymptote

2. Determine a, b, c and d so that $f(x) = ax + b + \frac{cx+d}{x^2}$. Deduce that the line (d) of equation ax + b is an oblique asymptote.

$$ax + b + \frac{cx+d}{x^2} = \frac{(ax+b)x^2 + cx + d}{x^2} = \frac{ax^3 + bx^2 + cx + d}{x^2} = \frac{x^3 - x + 1}{x^2}$$

By comparing the numerators:

$$a = 1$$
; $b = 0$; $c = -1$; $d = 1$
So $f(x) = x + \frac{-x+1}{x^2}$
 $f(x) - y = x + \frac{-x+1}{x^2} - x = \frac{-x+1}{x^2}$

$$f(x) - y = x + \frac{\frac{x^2}{-x+1}}{x^2} - x = \frac{-x+1}{x^2}$$

$$\lim_{x \to \pm \infty} \frac{-x+1}{x^2} = \lim_{x \to \pm \infty} -\frac{x}{x^2} = \lim_{x \to \pm \infty} -\frac{1}{x} = 0 \text{ so (d) is an oblique asymptote.}$$

3. Study the relative position between (d) and (C).

$$f(x) - y = x + \frac{-x+1}{x^2} - x = \frac{-x+1}{x^2}$$
 ; $-x + 1 = 0$; $x = 1$

(C) cuts (d)

$\boldsymbol{\chi}$	()	1	
f(x) - y	+	+	0	_
Position	(C) is above (d)	(C) is above	(C) belo	is ow (d)
		a (d)		

4. Show that $f'(x) = \frac{(x-1)(x^2+x+2)}{x^3}$ and set up the table of variations of f.

$$f'(x) = \frac{(3x^2 - 1)(x^2) - 2x(x^3 - x + 1)}{(x^2)^2} = \frac{3x^4 - x^2 - 2x^4 + 2x^2 - 2x}{x^4} = \frac{x^4 + x^2 - 2x}{x^4} = \frac{x(x^3 + x - 2)}{x^4}$$

$$= \frac{x^3 + x - 2}{x^3}$$

$$(x - 1)(x^2 + x + 2) = x^3 + x^2 + 2x - x^2 - x - 2 = x^3 + x - 2$$
So $f'(x) = \frac{(x - 1)(x^2 + x + 2)}{x^3}$

$$f'(x) = 0 \quad ; \quad x - 1 = 0 \quad or \quad x^2 + x + 2 = 0$$

$$x = 1 \qquad \Delta = 1^2 - 4(1)(2) = -7 < 0 \text{ so no roots}$$

4. Show that $f'(x) = \frac{(x-1)(x^2+x+2)}{x^3}$ and set up the table of variations of f.

	$\boldsymbol{\mathcal{X}}$		0	-	1
	x-1	_		_	0 +
x^2	+ x + 2	+		+	+
	x^3			+	+
	f'(x)	+		- () +
	f(x)	+∞		+∞	+∞
		-∞		f(1)) = 1

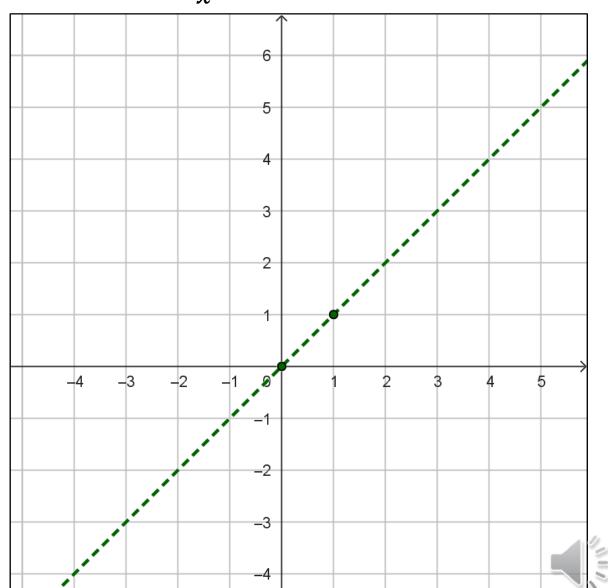
curve in an orthonormal system $(0; \vec{i}; \vec{j})$.

5. Plot (C) knowing that (C) cuts (x'x) at $x \approx -1.3$

> Start by the asymptotes:

x = 0 vertical line which is (y'y)

y = x Oblique line



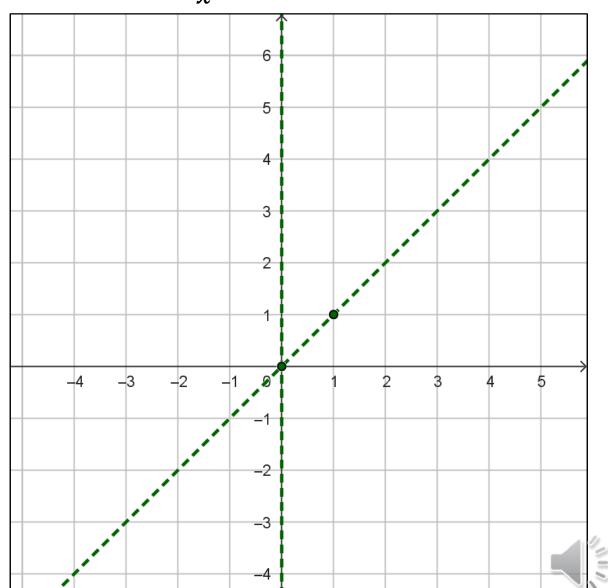
curve in an orthonormal system $(0; \vec{i}; \vec{j})$.

5. Plot (C) knowing that (C) cuts (x'x) at $x \approx -1.3$

> Start by the asymptotes:

x = 0 vertical line which is (y'y)

y = x Oblique line



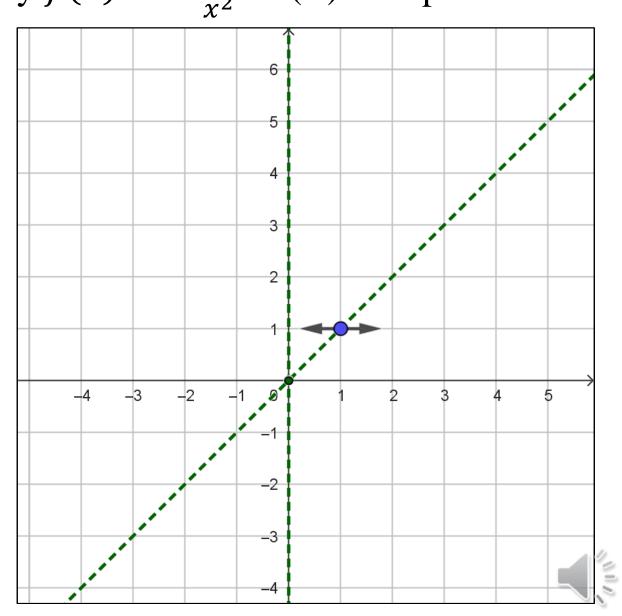
Consider the function f defined over IR^* by $f(x) = \frac{x^3 - x + 1}{x^2}$. (C) its representative curve in an orthonormal system $(0; \vec{\imath}; \vec{\jmath})$.

5. Plot (C) knowing that (C) cuts (x'x)

> Plot the extrema

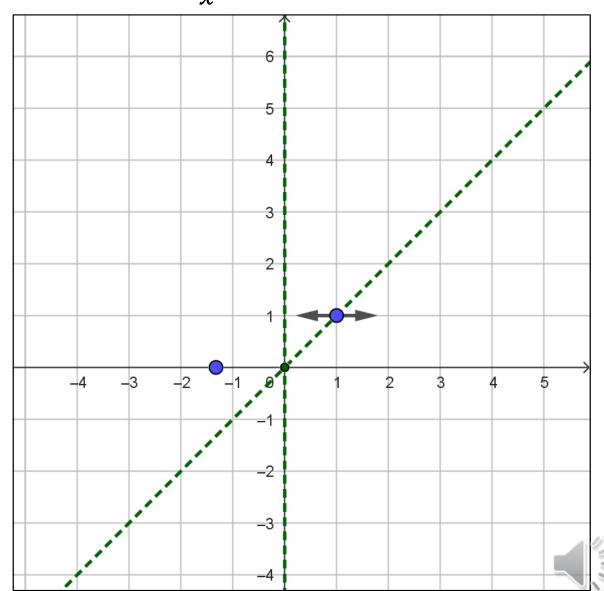
at $x \approx -1.3$

	$\boldsymbol{\chi}$	()	1
	x-1	_	_	0 +
x^2	+ x + 2	+	+	+
	χ^3	_	+	+
	f'(x)	+	_	0 +
	f(x)	+∞	+∞	+∞
		-∞	f(1) = 1



5. Plot (C) knowing that (C) cuts (x'x) at $x \approx -1.3$

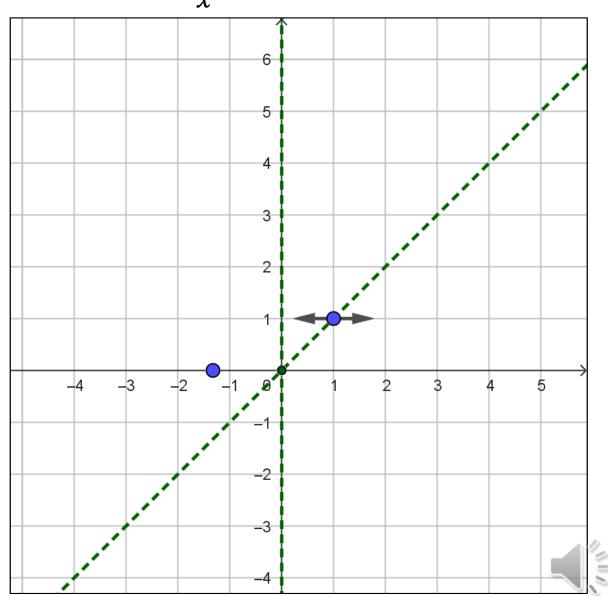
> Plot the particular points

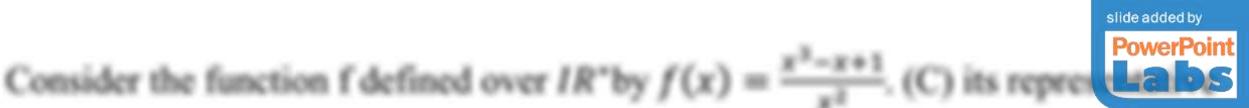


5. Plot (C) knowing that (C) cuts (x'x) at $x \approx -1.3$

> Start drawing based on the table of variations 0 1

	varia	tions	0		1	
	x-1	_		_	0	+
x^2	+ x + 2	+		+		+
	x^3	_		+		+
	f'(x)	+		_	0	+
	f(x)	+∞		+∞		+∞
_				f(x)	1) :	= 1



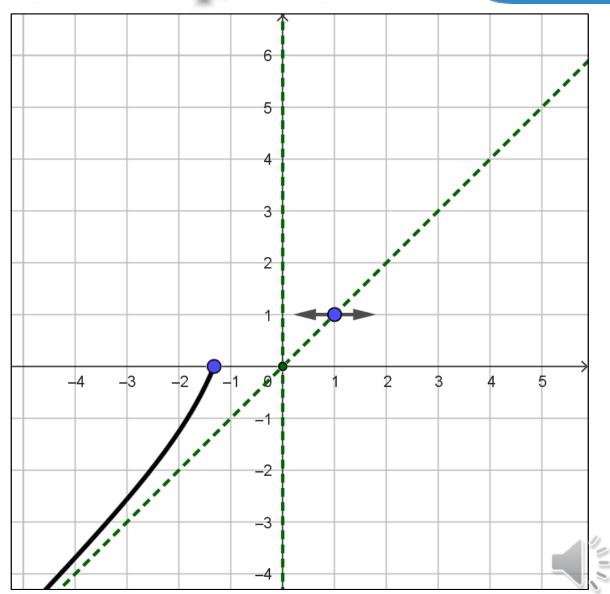


curve in an orthonormal system (0; i; j). 5. Plot (C) knowing that (C) cuts (x'x) at $x \approx -1.3$

Start drawing based on the table of

$\boldsymbol{\chi}$	ons	0		1	
f(x) - y	+		+	0	_
Dagitian	(C) is		(C) is above	(C)	is
Position	(C) is above	(d)	above	bel	ow (d)
	7.9		(d)		

(C) cuts (d) at (1;1)

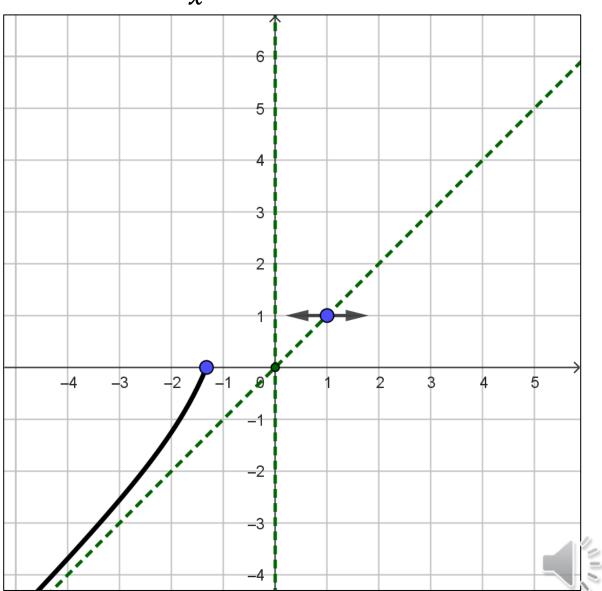


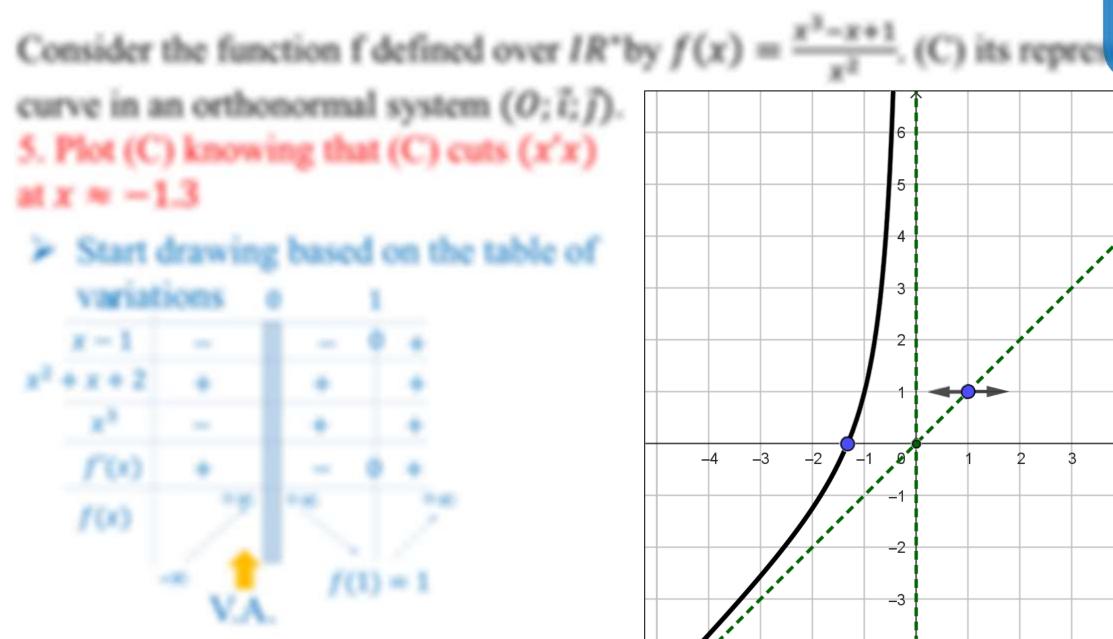
curve in an orthonormal system $(0; \vec{i}; \vec{j})$. 5. Plot (C) knowing that (C) cuts (x'x)

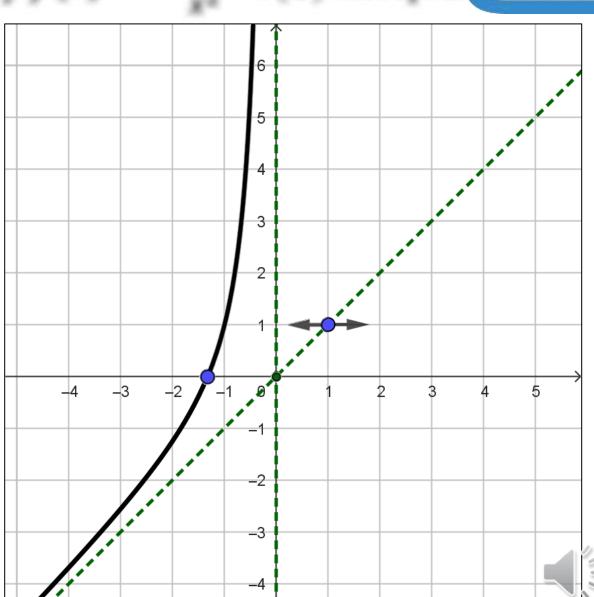
at $x \approx -1.3$

> Start drawing based on the table of

	varia	tions	0	1
	x-1	_	_	0 +
x^2	+ x + 2	+	+	+
	x^3	_	+	+
	f'(x)	+	_	0 +
	f(x)	+∞	+∞	+∞
*		-∞ V.A	f(1) = 1



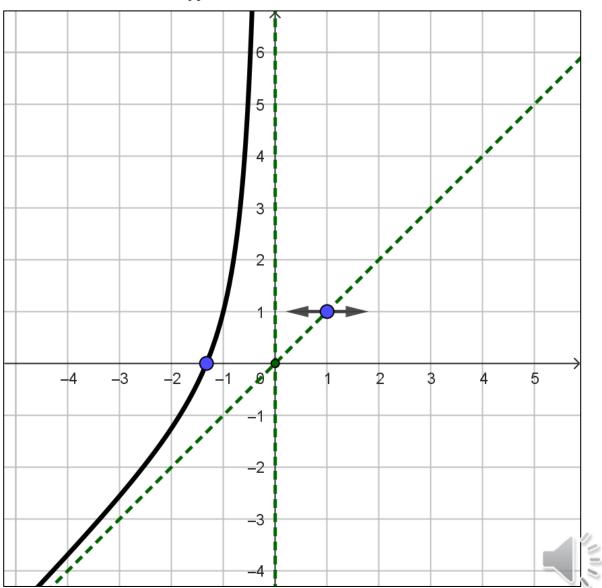


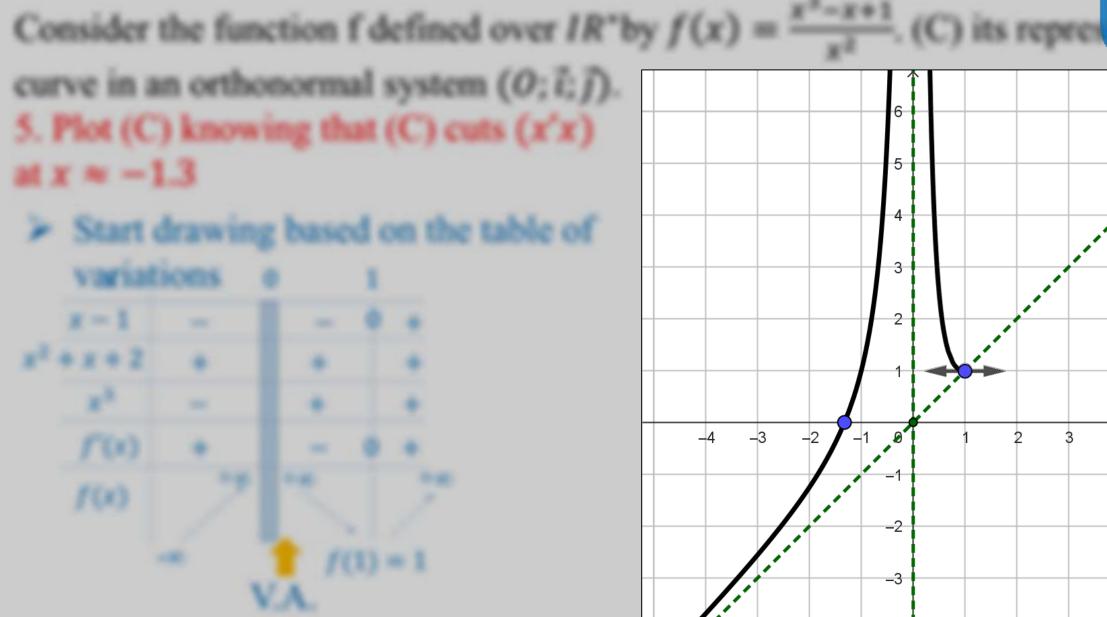


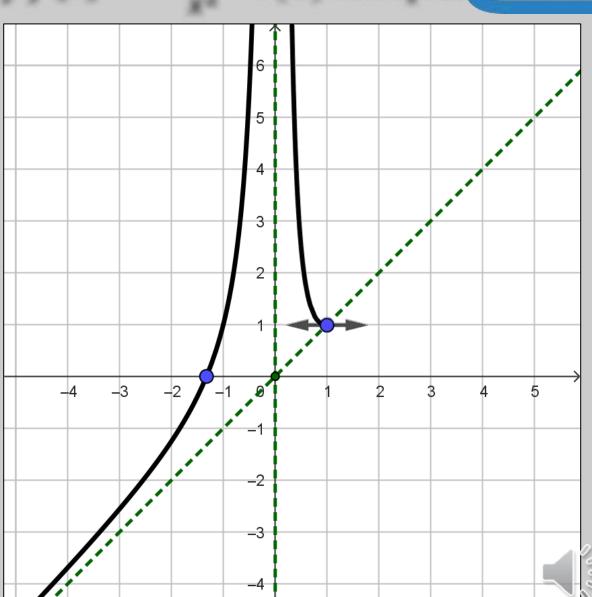
5. Plot (C) knowing that (C) cuts (x'x) at $x \approx -1.3$

> Start drawing based on the table of

	varia	tions	0		1	
	x-1	_		_	0	+
x^2	+ x + 2	+		+		+
	χ^3	_		+		+
	f'(x)	+		_	0	+
	f(x)	+∞	+	8		+∞
		-∞		f(1) :	= 1
*		•	V.A	A .		





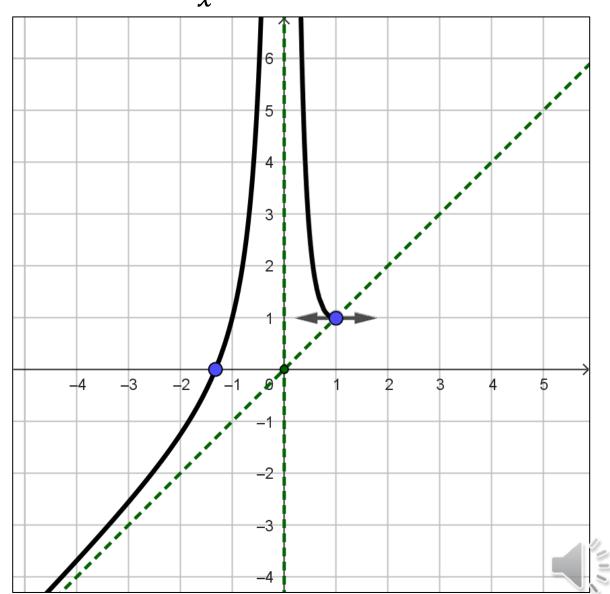


curve in an orthonormal system $(0; \vec{i}; \vec{j})$. 5. Plot (C) knowing that (C) cuts (x'x)

at
$$x \approx -1.3$$

> Start drawing based on the table of

	varia	tions	0		1	
	x-1	_		_	0	+
x^2	+ x + 2	+		+		+
	x^3	_		+		+
	f'(x)	+		_	0	+
	f(x)	+∞		+∞		+∞
*		-∞		<i>f</i> (1	.) :	= 1 O.A.



curve in an orthonormal system (0; i; j). 5. Plot (C) knowing that (C) cuts (x'x)

at $x \approx -1.3$

Start drawing based on the table of

\mathcal{X}		0		1	
f(x) - y	* +		+ •	0	_
Position	(C) is		(C) is above		(C) is
Position	(C) is above	(d)	above		below (d)
			(d)		

